Statistics seminar - Professor Annie Qu - University of California Irvine

A seminar by Professor Annie Qu from University of California Irvine

 

Title:  A Model-Agnostic Graph Neural Network for Integrating Local and Global Information

Abstract: Graph neural networks (GNNs) have achieved promising performance in a variety of graph focused tasks. Despite their success, the two major limitations of existing GNNs are the capability of learning various-order representations and providing interpretability of such deep learning-based black-box models. To tackle these issues, we propose a novel Model-agnostic Graph Neural Network (MaGNet) framework. The proposed framework is able to extract knowledge from high-order neighbors, sequentially integrates information of various orders, and offers explanations for the learned model by identifying influential compact graph structures. In particular, MaGNet consists of two components: an estimation model for the latent representation of complex relationships under graph topology, and an interpretation model that identifies influential nodes, edges, and important node features. Theoretically, we establish the generalization error bound for MaGNet via empirical Rademacher complexity and showcase its power to represent the layer-wise

neighborhood mixing. We conduct comprehensive numerical studies using both simulated data and a real-world case study on investigating the neural mechanisms of the rat hippocampus, demonstrating that the performance of MaGNet is competitive with state-of-the-art methods.

For further information, please contact RSFAS Seminars.

All information collected by the University is governed by the ANU Privacy Policy.

Details
Start Date
End Date
Venue
CBE LT1
Presenter(s)
Professor Annie Qu