Maestrini, L., Bhaskaran, A. and Wand, M. P. (2024). Biometrika 111, 1077-1084
Abstract: A recent article by Jiang et al. (2022) on generalized linear mixed model asymptotics derived the rates of convergence for the asymptotic variances of maximum likelihood estimators. If m denotes the number of groups and n is the average within-group sample size then the asymptotic variances have orders m−1 and (mn)−1, depending on the parameter. We extend this theory to provide explicit forms of the (mn)−1 second terms of the asymptotically harder-to-estimate parameters. Improved accuracy of statistical inference and planning are consequences of our theory.